Physiological properties of late inspiratory neurons and their possible involvement in inspiratory off-switching in cats.
نویسندگان
چکیده
To assess the functional significance of late inspiratory (late-I) neurons in inspiratory off-switching (IOS), membrane potential and discharge properties were examined in vagotomized, decerebrate cats. During spontaneous IOS, late-I neurons displayed large membrane depolarization and associated discharge of action potentials that started in late inspiration, peaked at the end of inspiration, and ended during postinspiration. Depolarization was decreased by iontophoresis of dizocilpine and eliminated by tetrodotoxin. Stimulation of the vagus nerve or the nucleus parabrachialis medialis (NPBM) also evoked depolarization of late-I neurons and IOS. Waves of spontaneous chloride-dependent inhibitory postsynaptic potentials (IPSPs) preceded membrane depolarization during early inspiration and followed during postinspiration and stage 2 expiration of the respiratory cycle. Iontophoresed bicuculline depressed the IPSPs. Intravenous dizocilpine caused a greatly prolonged inspiratory discharge of the phrenic nerve (apneusis) and suppressed late-inspiratory depolarization as well as early-inspiratory IPSPs, resulting in a small constant depolarization throughout the apneusis. NPBM or vagal stimulation after dizocilpine produced small, stimulus-locked excitatory postsynaptic potentials (EPSPs) in late-I neurons. Neurobiotin-labeled late-I neurons revealed immunoreactivity for glutamic acid decarboxylase as well as N-methyl-D-aspartate (NMDA) receptors. These results suggest that late-I neurons are GABAergic inhibitory neurons, while the effects of bicuculline and dizocilpine indicate that they receive periodic waves of GABAergic IPSPs and glutamatergic EPSPs. The data lead to the conclusion that late-I neurons play an important inhibitory role in IOS. NMDA receptors are assumed to augment and/or synchronize late-inspiratory depolarization and discharge of late-I neurons, leading to GABA release and consequently off-switching of bulbar inspiratory neurons and phrenic motoneurons.
منابع مشابه
Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
The present paper describes several models of the central respiratory pattern generator (CRPG) developed employing experimental data and current hypotheses for respiratory rhythmogenesis. Each CRPG model includes a network of respiratory neuron types (e.g., early inspiratory; ramp inspiratory; late inspiratory; decrementing expiratory; postinspiratory; stage II expiratory; stage II constant fir...
متن کاملOpiate slowing of feline respiratory rhythm and effects on putative medullary phase-regulating neurons.
Opiates have effects on respiratory neurons that depress tidal volume and air exchange, reduce chest wall compliance, and slow rhythm. The most dose-sensitive opioid effect is slowing of the respiratory rhythm through mechanisms that have not been thoroughly investigated. An in vivo dose-response analysis was performed on medullary respiratory neurons of adult cats to investigate two untested h...
متن کاملRespiratory neuronal activity during apnea and poststimulatory effects of laryngeal origin in the cat.
We investigated the behavior of medullary respiratory neurons in cats under pentobarbitone anesthesia, vagotomized, paralysed, and artificially ventilated to elucidate neural mechanisms underlying apnea and poststimulatory respiratory depression induced by superior laryngeal nerve (SLN) stimulation. Inspiratory neurons were completely inhibited during SLN stimulation and poststimulatory apnea. ...
متن کاملA Review of Effects of Inspiratory Muscle Training on Clinical and Functional Outcomes of Patients with Mechanical Ventilation
Background and Objectives: This review aims to explore the use of inspiratory muscle training (IMT) in patients with mechanical ventilation (MV). The topics were related to its effect on the duration of MV or weaning, respiratory symptoms or lung function, inspiratory muscle strength (IMS) or endurance, functional ability, and quality of life (QoL). Methods: Articles published in the last 10 ...
متن کاملResponse of Maximum Inspiratory Pressure and Functional Capacity to Positive End-Expiratory Pressure Device after Valvular Heart Surgery
Background: Pulmonary complications following valvular heart surgery are common and contribute to increased duration of hospital stay, rate of morbidity, and mortality. The purpose of the present study was to investigate the response of maximum inspiratory pressure and functional capacity to Positive End-Expiratory Pressure device in patients who underwent valvular hea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2002